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ABSTRACT
Event tracing is an important tool for understanding the
performance of parallel applications. As concurrency in-
creases in leadership-class computing systems, the quantity
of performance log data can overload the parallel file system,
perturbing the application being observed. In this work we
present a solution for event tracing at leadership scales. We
enhance the I/O forwarding system software to aggregate
and reorganize log data prior to writing to the storage sys-
tem, significantly reducing the burden on the underlying file
system for this type of traffic. Furthermore, we augment
the I/O forwarding system with a write buffering capability
to limit the impact of artificial perturbations from log data
accesses on traced applications. To validate the approach,
we modify the Vampir tracing toolset to take advantage of
this new capability and show that the approach increases
the maximum traced application size by a factor of 5x to
more than 200,000 processes.
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1. INTRODUCTION
Performance analysis tools are a vital part of the HPC

software ecosystem. They provide insight into the runtime
behavior of parallel applications and guide performance op-
timization activities toward the most promising or urgent
aspects. Porting and tuning performance measurement tools
are essential since they must be efficient and must not per-
turb the runtime behavior of the analyzed application, even
at full scale.

The rising levels of concurrency in leadership-class sys-
tems present a number of challenges to performance analysis
tools. One challenge to scaling these tools is efficiently stor-
ing trace data. These tools often generate large amounts
of data and must execute efficiently at full scale. Tradi-
tional access patterns for these tools, such as file per pro-
cess, file per thread, and synchronous I/O, do not scale well
past tens of thousands of processes. Such data access pat-
terns require excessive use of file metadata operations and
overwhelm leadership-class storage systems. Synchronous
I/O may cause unnecessary delays in trace data collection
and skew application execution. Alternative access patterns,
such as a shared file pattern, may alleviate metadata bottle-
necks but inject artificial synchronization into the applica-
tion. Therefore, a unique data organization is desired that
exploits the log like I/O behavior of performance analysis
tools, allows for uncoordinated access to a shared file from
multiple processes, and tolerates lazy I/O semantics.

To achieve and sustain application event trace recording at
full leadership-class scale, we investigated several I/O opti-
mizations to support high-performance, scalable, and unco-
ordinated access of event trace data generated by the Vampir
toolset [17]. We observed that the uncoordinated I/O pat-
terns generated by the VampirTrace and Open Trace For-
mat (OTF) tools could be transparently optimized at an
intermediate file I/O aggregation layer, known as the I/O
forwarding layer. We integrated the I/O Forwarding Scal-
ability Layer (IOFSL) [2, 23] with the VampirTrace/OTF
toolset. Also as part of contributions of this paper, we im-
plemented optimizations and new capabilities within IOFSL
to reorganize and optimize the captured VampirTrace/OTF
I/O patterns while preserving the independent I/O require-



ments of these tracing tools. These new features include a
distributed atomic file append capability and a write buffer-
ing capability. By taking advantage of characteristics of the
event trace workload and augmenting our HPC I/O stack to
better support it, we have reduced the stress that the trace
I/O workload places on HPC storage systems. Furthermore,
we have reduced the impact of HPC I/O storage systems on
the tracing tools.

Our investigation and evaluation resulted in significant
improvements to the VampirTrace and OTF software stack.
We increased the VampirTrace and OTF tracing infrastruc-
ture scalability by 5x (a 40, 000 core to 200, 000 core capabil-
ity improvement), generated a trace containing 941 billion
events at an average aggregate trace data storage rate of
13.3 billion events per second, and demonstrated that cou-
pling IOFSL and the Vampir toolset yields a performance
analysis framework suitable for end users on leadership-class
computing systems. Overall, we have shown that the entire
software stack including trace generation, middleware, post-
processing, and analysis can be utilized to analyze a parallel
application consisting of 200,448 processes.

The remainder of this paper is organized as follows. The
general I/O requirements of performance analysis tools and
the Vampir toolset I/O needs are described in Section 2. An
overview of IOFSL and optimizations relevant to tracing is
provided in Section 3. Section 4 describes the integration
and scalability improvement efforts. The proposed concepts
are evaluated on a leadership-class machine, and the result-
ing performance measurements are analyzed in Section 5.
An overview of related work is given in Section 6. Con-
clusions and insights into future work are summarized in
Section 7.

2. THE VAMPIR TOOLSET
The Vampir toolset is a sophisticated performance anal-

ysis infrastructure for parallel programs that use combina-
tions of MPI, OpenMP, PThreads, CUDA, and OpenCL.
It consists of the Vampir GUI for interactive post-mortem
visualization, the VampirServer for parallel analysis, the
VampirTrace instrumentation and runtime recording sys-
tem, and the Open Trace Format as the file format and
access library. The Vampir toolset relies on event trace
recording, which allows the most detailed analysis of the
parallel behavior of target applications. First, the Vampir
toolset performs instrumentation of the target application
using various techniques. During run time, the monitoring
component collects the instrumented events together with
significant properties. These include entry/exit events for
user code subroutines, message send/receive events, collec-
tive communication events, shared memory synchronization,
and I/O events. A single Vampir event needs approximately
10 to 50 bytes for its encoding in the buffer. Typically, event
frequencies range from 100 to 100, 000 per second (with
proper settings). A parallel run with 10, 000 processes or
threads for 10 minutes results in data sizes of 6 · 109 to
3 · 1013 bytes (approx. 5.6 GB to 27 TB1). The trace buffer
size should not exceed the local main memory size minus
the memory required by the target application; otherwise
the application behavior will be severely distorted. Typi-
cal sizes are 10 MB to 1 GB per process or thread. The

1In this paper, we use 1 MB = 220B, 1 GB = 230B, and
1 TB = 240B.

event trace data is written to a set of OTF files and is then
ready for post-mortem investigation with the Vampir GUI.
By default, VampirTrace and OTF use a file-per-thread I/O
pattern to store data to minimize coordination.

Figure 1: The VampirTrace data flow.

Figure 1 gives an overview of VampirTrace’s data flow.
Additional information about Vampir, VampirTrace, and
OTF is provided in our prior work [17]. When the Vampir-
Trace monitoring component captures the parallel runtime
behavior of the target application, it strives to impose min-
imal perturbation. Triggered by events of interest, the run-
time recording layer stores the event information together
with vital properties (precise time stamp, event-specific prop-
erties, performance counter values if configured) to a preal-
located memory buffer. The recording is performed indepen-
dently for every process or thread into local buffers. In order
to avoid artificial synchronization of the target application,
buffers are never shared between processes or threads.

2.1 I/O Patterns in VampirTrace
The VampirTrace buffer can be written to an OTF file in

several ways. The most general one is to flush the buffer as
soon as it is filled. If the measurement library cannot ensure
enough space for an event in the buffer, the application is
delayed, and the data is written to a file through the OTF
library. These buffer flush phases are clearly marked in the
trace so that their effect is not mistaken for stray behavior
of the target application. However, they can delay other
processes waiting for messages or synchronization in the ap-
plication, unless the buffer limit is reached at the same spot
in the application for all processes (i.e., each process gener-
ated the same number of events). This becomes an issue for
larger scale and tightly coupled applications.

Alternatively, VampirTrace can use collective MPI opera-
tions to trigger synchronized buffer flushes by piggybacking
work on application collective operations. For each collec-
tive operation, the measurement environment communicates



the maximum buffer level. Once a threshold is reached,
all processes enter a flush phase. All synchronous flushes
and synchronizations are captured in the trace and clearly
marked for analysis. An additional barrier after the flush
makes sure the processes resume simultaneously, avoiding
an indirect impact on the application behavior.

Having a single flush at the end of the recording (typi-
cally during an MPI_Finalize wrapper) is preferred when
possible because it removes trace I/O from the application
execution. For this case, the event buffer must be able to
hold all events generated during the application execution.
This can be achieved by reducing the total event count, for
example, by using filters or tracing only specific iterations
of the application. In addition, transparent compression us-
ing zlib in the OTF layer helps reducing the file sizes. It is
applied only to the output during a buffer flush to keep the
perturbation minimal at the expense of the required memory
buffer space.

In general, the number of buffer flushes per process can be
limited to avoid uncontrolled use of storage space. The spe-
cialized cases for flushing largely improve the perturbation
due to I/O, but it cannot be guaranteed that a collective
operation triggers a buffer flush before the buffer is full. It
is also difficult to choose appropriate settings that do not
require buffer flushes. Therefore, VampirTrace may need
to fall back to the general uncoordinated buffer flush that
prevents loss of data at the cost of a performance impact.
Traditional collective I/O optimizations and methods rely
on implicit synchronization. This required synchronization
distorts the measurement and is therefore not an appropriate
solution for VampirTrace’s data collection. Also, the possi-
bility of processes or threads being created during runtime
makes it impossible to know how many participants there
might be for collective I/O at any point in time.

2.2 I/O Challenges and Solutions
The original configuration of VampirTrace imposed two

I/O challenges that prevented it from tracing applications
running at full-scale on leadership-class systems. First, the
often nearly simultaneous buffer flushes of many processes
or threads increase I/O bandwidth pressure on the I/O sub-
system. This pressure can delay trace data storage and skew
the application trace measurements. The storage targets can
get overwhelmed with inefficient, nearly random workloads
that can sap over 60% of their peak performance. Second,
the metadata load for this configuration is high because of
the creation of many individual files and the allocation of file
system blocks for a large number of I/O operations. For ex-
ample, ORNL’s JaguarPF is in principle capable of opening
one file per process even at the scale of 224, 000 processes,
taking around 45 seconds (David Dillow, personal communi-
cation, September 20, 2011). In production usage however,
such operations have been observed to take five minutes [30].
Parallel file creation requests at a high rate will impact all
other users and jobs on the machine. VampirTrace/OTF
supports the use of node-local storage for the intermediate
trace I/O. This involves copying the files from local to global
directories after the measurement. However, node-local stor-
age is not available on many current large-scale systems and
the situation will not change on the next generation systems
(Cray XK6, Blue Gene/Q) either.

To address these challenges, we identified several oppor-
tunities that allow VampirTrace to store its trace data col-

lections more efficiently while minimizing the overhead of
the data accesses on the traced applications. We found that
a shared file access pattern may be better suited for large-
scale applications than is the file-per-thread access pattern.
This approach significantly reduces the metadata load of
the file-per-thread access pattern. Since writing to a shared
file from many processes requires coordination among those
processes, we opted to store trace data collections in mul-
tiple files, where the total number of files is far less than
the number of traced processes or threads. For storing the
trace data collections, we identified an append-only stream-
ing access pattern that is easier for parallel file systems to
handle than are random I/O patterns. To further reduce the
impact of file system performance on trace data collection,
we recognized that a write buffering strategy can isolate file
system performance from the trace data collection storage.

The capabilities required by the improved VampirTrace
I/O access pattern are not readily available or adequately
supported by vendor-supplied I/O software stacks. The nec-
essary capabilities missing from these stacks include trans-
parent aggregation of uncoordinated I/O requests to a set of
files, portable atomic append of file data, and write buffer-
ing. These capabilities can be implemented within I/O for-
warding tools, such as IOFSL. Our I/O forwarding approach
provides a convenient solution that integrates with the exist-
ing VampirTrace/OTF infrastructure and promises to scale
much farther than today’s high-end systems.

3. THE IOFSL I/O FORWARDING LAYER
The goal of I/O forwarding is to bridge computation and

storage systems in leadership-class computers. Using this
software, all application file I/O requests are shipped to ded-
icated resources that aggregate and execute the requests.
This approach allows I/O forwarding layers to bridge com-
pute nodes, networks, and storage systems that are phys-
ically disconnected, such as on the IBM Blue Gene sys-
tems [32]. I/O forwarding middleware aggregates file I/O
requests from multiple distributed sources (I/O forwarding
clients) to a smaller number of I/O handlers (the I/O for-
warding servers). The I/O forwarding server delegates and
executes the requests on behalf of the clients. Since the I/O
forwarding layer has access to all the file I/O requests, one
can implement file I/O optimizations on both coordinated
and uncoordinated file access patterns. These optimizations
include coalescing, merging, transforming, and buffering I/O
requests.

IOFSL [2, 23] is a high-performance, portable I/O for-
warding layer for leadership-class computing systems. For
communication between the IOFSL clients and servers, the
Buffered Message Interface (BMI) library [5] is used. BMI
supports native access to the SeaStar2+ network used on the
Cray XT platforms using the Portals API and to the IBM
Blue Gene/P tree network using ZOID [14]. TCP is sup-
ported as a general transport. IOFSL provides a stateless
I/O application programming interface called ZOIDFS that
applications can use to directly communicate with IOFSL
servers. It also provides compatibility layers for POSIX and
MPI-IO programming interfaces.

IOFSL is an ideal location to prototype and evaluate new
or existing HPC I/O capabilities. Figure 2 illustrates a
typical HPC software stack on leadership-class systems and
where I/O forwarding fits into it. IOFSL interacts directly
with the parallel file system. Implementing our enhance-
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Figure 2: Overview of the HPC I/O software stack.

ments we present in this paper required no changes to vendor-
supplied systems software; all of our I/O enhancements were
implemented within IOFSL. Since IOFSL is positioned just
above the file system, our enhancements to IOFSL can affect
all applications using the I/O software stack.

In Section 2.2, we identified several file optimizations that
can improve the performance and scalability of the trace
data generation of VampirTrace. These improvements in-
clude a write buffering strategy to quickly offload trace data
from the application compute nodes and an atomic file ap-
pend capability to reduce random I/O workloads to the file
system. In this section, we describe how we implemented
these capabilities within IOFSL.

The IOFSL write buffering capability provides nonblock-
ing file I/O enhancements to the IOFSL server and client.
This capability transforms blocking I/O operations into non-
blocking ones while requiring minimal changes to the ap-
plication and no changes to the ZOIDFS API. It relaxes
the data consistency semantics in order to achieve higher
I/O throughputs for the application. To implement this,
we modified the file write data path in the IOFSL server
to signal operation completion to the client before initiating
the file write operation. Once the I/O forwarding server re-
ceives the client data for a non-blocking operation, the data
is buffered within the server and the client I/O operation
is completed. The client is then free to release or reuse its
transmitted data buffer since the server is now responsible
for completing the I/O operation for the client. The I/O
request will complete as soon as the server has resources
to process the request or when the client forces all pend-
ing nonblocking I/O operations to complete using a commit
operation. This behavior allows the IOFSL server to trans-
parently manage nonblocking I/O operations initiated by
clients.

IOFSL’s atomic append capability allows multiple clients
to share the same output file without client-side coordination
and supports tools that exhibit log like data access patterns.
This file append capability is a distributed and atomic I/O
operation. We developed several new IOFSL features to
support distributed atomic file append operations. IOFSL
servers now provide a distributed hash table that is used
to track the end-of-file offset for unique files. This data
structure provides a fetch and update operation, so that the
current file offset can be retrieved and updated. The dis-
tributed storage of file handles allows IOFSL to scatter and
decentralize the file offset data. We also developed a mech-
anism for IOFSL servers to communicate with each other.

Originally, IOFSL provided a client-server communication
model. The server to sever communication capability allows
an IOFSL server to query remote IOFSL servers and retrieve
the end-of-file offset information. As a consequence, IOFSL
clients are not required to contact multiple IOFSL servers
to obtain and update file offset information. Additionally,
the IOFSL server coalesces multiple atomic append requests
to limit the amount of server to server traffic. The atomic
append capability can be used by any number of IOFSL
servers, including a local server mode when data files are
not shared between IOFSL servers.

There are several benefits to our atomic append approach.
Clients can append data to a file that is simultaneously be-
ing written to by other clients and I/O forwarding servers.
IOFSL clients do not require prior knowledge of the end-
of-file position and simply need to deliver the data to be
written into the file to the server. This capability effectively
allows applications to stream data to the IOFSL servers,
which manage data placement within a file. The server re-
turns to the client the file offset where the data was written.
This capability is similar to MPI shared file pointers and
the O APPEND mode provided by the POSIX I/O API.
The novelty of our approach is in supporting a distributed
and portable append functionality — O APPEND does not
work in a multi node environment like a parallel computing
system. Since this capability is implemented within IOFSL,
it can be used on any system where IOFSL can run, re-
gardless of the underlying file system, operating system, or
network. For write buffering operations, the IOFSL server
can also return the state of completed operations. The client
and application can use this information to construct an in-
dex of the data accesses within the file and determine the
state of pending nonblocking operations.

4. INTEGRATING OTF WITH IOFSL
The OTF layer provides a single integration point between

the VampirTrace stack and IOFSL. Since all trace I/O hap-
pens in this layer, this permits a portable solution that is
usable for other applications based on OTF. We chose to use
the ZOIDFS API because it provides additional capabilities
that are not present in the IOFSL POSIX translation layers.

The primary integration goal was to reduce the number of
files generated by the Vampir tracing infrastructure. Instead
of storing n OTF event streams in n files, we aggregate the
streams into m files, where m � n. m can vary based on
the tracing configuration. For example, m could be equal
to the number of IOFSL servers (one file per IOFSL server)
or be smaller (files shared between the servers). Figure 3
illustrates the file aggregation and integration of the used
software layers.

To accomplish this, all ZOIDFS write operations use the
novel atomic-append feature of IOFSL. This allows arbitrary
subsets of event trace streams to share the same file without
any coordination on the OTF side. IOFSL ensures that
blocks from the same source stay in their original order but
makes no guarantees with respect to global ordering; this
approach enables additional optimizations.

The coordination of the blocks and their positions in the
shared file is done by IOFSL and the results of this activity
is reported to OTF. Every OTF stream2 collects the file

2An OTF stream abstracts the events from a single thread
or process.



Figure 3: I/O aggregation provided by IOFSL for
VampirTrace / OTF. One forwarding server serves
multiple clients, usually many servers are used to
provide high capacity.

positions (returned by IOFSL) of its blocks individually in
memory. As a final new step, all OTF streams write a list of
file positions for their own blocks together with their stream
identifier. This is sufficient to later extract all blocks from
this stream in correct order during reading. The mapping
is stored in a shared index file, which is also written via
IOFSL using atomic append. The trace data files and index
files can be read with or without the use of IOFSL.

The traditional OTF write scheme uses synchronous I/O
calls to ensure that all I/O activities happen during the
buffer flush phases, which are explicitly marked in the trace.
While the flush phases are blocking and application buffers
are reused, there can be buffering by the operating system,
the standard library, or the file system itself. However, op-
timizations that just hide the transfer time can negatively
affect the application when resources such as I/O bandwidth
are used after the flush. The write buffering capability of
IOFSL can also decrease the time spent in buffer flushes.
Unlike local optimizations however, the trace data has been
transferred from the application node to the I/O forwarding
node after the completed flush. The file I/O is then initiated
from the forwarding node, and no local resources are used
after that, minimizing the application perturbation. The ef-
fects are similar to other jobs utilizing the shared network
and I/O subsystem. In cases where this is undesirable —
for example, if the target application’s I/O is the subject
of the analysis or if the machine’s I/O network is not sep-
arate from the communication network — the nonblocking
I/O capability may not be appropriate and can be disabled.
Figure 4 displays the interaction between application, trace
library, IOFSL, and the file system in a sequence diagram.

In addition to the improvements necessary to efficiently
write the trace output, a number of other optimizations
were performed to address scalability bottlenecks within the
Vampir toolset. Trace post-processing with vtunify was
previously parallelized using OpenMP and MPI. The mas-
ter vtunify process serves as a global instance to unify the

Figure 4: Sequence diagram of a flush that utilizes
the buffered I/O capability of IOFSL. Vertical axis
is time, increasing downward, not true to scale.

trace definitions (metadata about processes, functions, etc).
In order to enable the handling of even larger traces, the
serial workload in the master process has been significantly
reduced. The remaining serial workload was optimized in
time complexity with respect to the total number of applica-
tion threads. A merge option was implemented in vtunify,
where each unification worker writes only a single output
file instead of one output file per processed stream. This
can generate OTF files that are compatible with legacy OTF
applications without running into the metadata issues from
creating too many files. With these improvements, trace
post-processing becomes feasible for large scales, as is doc-
umented in Section 5. A hierarchical unification scheme for
definitions could further improve the scalability and elimi-
nate the master process as a bottleneck.

As described in Section 2.1, a synchronized flush is ben-
eficial for large-scale tracing scenarios that generate many
events. For the required high watermark check, an MPI_All-

reduce is injected into each global collective operation. At
large scales this can result in more significant overhead, since
the MPI_Allreduce operation is especially prone to high
variability caused by operating system noise [16]. In or-
der to reduce the total overhead, a configuration option has
been introduced that specifies that the watermark should be
checked only every nth collective operation. This mitigates
the overhead while still being able to reliably trigger collec-
tive synchronized flushes. The additional time used by the
measurement library for the watermark check is still clearly
marked in the trace file.

We also improved OTF’s zlib compression capability. OTF
provides zlib with a dedicated compression output buffer.
During the OTF and IOFSL integration, the compression
capability was updated to ensure that full compression out-
put buffers were written to the file system. This modifica-
tion ensured that most OTF writes have a fixed size and
are stripe aligned, presenting a more efficient pattern to file
systems. Unaligned OTF accesses can occur only at the end
of the application’s execution when the remaining contents
of the compression buffer are flushed to the file system.

VampirTrace and the IOFSL integration presented in this
paper was designed and tested with hybrid applications that
use MPI in combination with OpenMP, threads, CUDA, or
other node-local parallel paradigms. No restriction is im-
posed to when new threads can be created or when buffer
flushes may happen.



5. EVALUATION AND ANALYSIS
JaguarPF [4] is a 2.3 petaflop Cray XT5 Supercomputer

deployed at the Oak Ridge Leadership Computing Facility
(OLCF) at Oak Ridge National Laboratory (ORNL). Data
storage is provided by a Lustre-based center wide file sys-
tem [28].

Figure 5: Deployment of application processes and
IOFSL servers on JaguarPF.

User-level access to the I/O nodes or Lustre router nodes,
which would be optimal locations for running IOFSL servers,
is not possible on JaguarPF because of system administra-
tion policies. Therefore, we allocate additional compute
nodes with each application launch, spawn IOFSL servers
on these extra nodes, and proxy all application I/O requests
through these nodes. Figure 5 illustrates this deployment
strategy. On JaguarPF, the BMI Portals driver is used to
leverage the performance of the XT5 SeaStar 2+ intercon-
nect. Using the default IOFSL configuration (unbuffered
I/O mode) and the IOR benchmark on JaguarPF when the
system was in normal operation, we observed 10.8 GB/s to
11.5 GB/s aggregate sustained bandwidth writing to a single
shared file for 1,920 to 192,000 IOFSL clients and when us-
ing at most 160 IOFSL servers. We also observed aggregate
sustained bandwidths using 60 IOFSL clients per IOFSL
server and when writing to unique files (one file per process)
of 17.9 GB/s for 2,880 clients, 39.2 GB/s for 5,760 clients,
and 42.5 GB/s for 11,520 clients.

To better understand the performance of the new IOFSL’s
write buffering capability when compared to the original
IOFSL synchronous write behavior, we measured the per-
formance of the new capability using a modified version of
the IOR benchmark that invoked write buffering operations.
These experiments focused on identifying the I/O through-
put observed by the application, and the results ignore the
cost of application-initiated flushes. Figure 6 illustrates the
performance on Oak Ridge’s JaguarPF Cray XT5 system.
This data clearly indicates that IOFSL can significantly ac-
celerate the sustained storage system bandwidth perceived

Figure 6: IOFSL write buffering performance on
Cray XT5 system (OLCF’s JaguarPF). For this ex-
periment, we used a single IOFSL server, 12 to 324
IOFSL clients, and 4 MB to 64 MB of data per
IOFSL client.

by the application when sufficient buffer space is available at
the IOFSL server. The drop in performance at the bottom
right corner of this figure occurs when the IOFSL server ex-
ceeds its write buffer space and forces nonblocking I/O oper-
ations to act like blocking ones. Therefore, the usefulness of
this capability is constrained by the amount of write buffer
available to an IOFSL server, the frequency of write buffer-
ing operations initiated by IOFSL clients, and the sustained
bandwidth the IOFSL server can realize when transferring
the buffered data to the storage system.

To demonstrate tracing at large scale, we instrumented
the petascale application S3D with VampirTrace. S3D is a
parallel direct numerical simulation code developed at San-
dia National Laboratories [6]. We used a problem set that
scales to the full JaguarPF system. It uses weak scaling to
allow a wide range of process counts, from 768 to 200,448.
In its role as a early petascale code, S3D is well under-
stood and has been analyzed with TAU and Vampir at lower
scales [15]. The purpose of our experiment was to investi-
gate the scaling of trace recording rather than an analysis
of the application. S3D provides a real-world instrumenta-
tion target for the measurement environment. In addition,
the large number of MPI messages generated by S3D creates
a high frequency of events (approximately 7,700 events per
second per process). We have traced 60 application time
steps during our experiments using a basic online function
filter. Further improvements of the instrumentation, such
as selective function instrumentation or manually tracing a
limited number of time steps, were deliberately not applied
in order to demonstrate a challenging situation for the mea-
surement environment. The synchronous flush feature in
VampirTrace was used with a total of three flushes during
the application execution in addition to the final flush during
the application shutdown.

Prior to our successful demonstration, the largest scale
trace for VampirTrace was approximately 40, 000 processes
using POSIX I/O. In practice, achieving this level of par-



allelism is already difficult because of substantial overhead
during file generation and the impact on other users of the
file system.

In our demonstration we utilized the full stack that is in-
volved in trace generation: application (S3D), VampirTrace,
OTF, IOFSL, the BMI Portals driver for network transfers,
and Lustre as a target file system. We have conducted mul-
tiple experiments tracing up to 200,448 application cores
running S3D and using a set of 672 I/O forwarding nodes
resulting in 2,688 files. The largest generated trace size was
4.2 TB of compressed data containing 941 billion events.
The total time spent on trace I/O, including forwarding
server connection setup, file creation, open, sync, and close,
was 71 seconds with write buffering I/O, for a total appli-
cation run time of 22 minutes. Trace I/O was synchronized
among the MPI processes so this time includes the time
spent in barriers when waiting for other processes to finish
their writing. It therefore represents the total extension of
application run time due to trace I/O. On average it took
5.5 seconds for each process to establish the connection to
the forwarding server and to open the four shared output
files (definitions file and events file, plus an index file for
each). Some processes were delayed by up to 32 seconds
because of the massive stress on I/O forwarding nodes re-
sulting from write operations from other processes. The
intermediate buffer flushes are not affected by connection
initialization, file open times, and final commit and there-
fore show much better individual performance. With write
buffering enabled, aggregated write rates of up to 154 GB/s
or 33.5 billion events per second were observed, as recorded
by the tracing measurement environment during individual
flushes. We observed this high bandwidth because all trace
data fit into the IOFSL servers’ buffers. The cost for the
client to flush this data was limited by the IOFSL server
performance. This bandwidth result also includes the syn-
chronization of all processes as well as the overhead of OTF
and compression.

For comparison, we ran a full-scale experiment using the
IOFSL enhancements and unbuffered I/O. The total trace
I/O time was 122 seconds, yielding a sustained aggregate
bandwidth of 35.3 GB/s. This further indicates that write
buffering reduces the I/O overhead observed by the tracing
infrastructure. The IOFSL capability buffers trace data at
the IOFSL server and overlaps application tracing with trace
data storage. In this test series, the trace size per process
remains almost constant.

The post-processing (vtunify) for such a trace requires
approximately 27 minutes but only a fraction of the re-
sources of the application (10,752 workers). This is a re-
quired step, regardless of the use of IOFSL. In the post-
processing, IOFSL was not utilized since only 10,754 files3

are created in this step.
This large-scale demonstration shows that trace record-

ing on full-scale leadership-class systems can be done with a
well-manageable overhead, even with trace I/O phases dur-
ing the application execution. We investigated the scaling
behavior of our solution with a series of experiments in differ-
ent configurations. Figure 7 shows the total application run
times at different scales with and without tracing. While the
overhead of both trace I/O and tracing in general increases

310,752 event files, one definitions file, and one control file.
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Figure 7: Run times of S3D with and without trac-
ing for different process counts: (a) average of 11
experiments, (b) average of 7 experiments, (c) sin-
gle test run during dedicated reservation.

with the number of processors, it remains below 15% even
at full scale.

A comparison with POSIX I/O at different scales is shown
in Figures 8 and 9. The POSIX I/O experiment with 86,400
cores was conducted during a dedicated system reservation.
To avoid any potential impact to file system stability, we
did not scale the POSIX I/O tests further. For all tests, the
same software versions were used — this means that also
POSIX I/O tests benefit from those improvements described
in Section 4 that are not directly related to IOFSL. The
event rate for IOFSL is limited mainly by the I/O through-
put of the forwarding servers to the file system, while POSIX
I/O is limited by the rate of file creation. The impact of file
creation depends on total time, which in turn depends on
trace size per process; it will be even more dominant with
lower numbers of events.
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Figure 8: Total trace I/O times for different
process counts: (a) average of 11 experiments
with min/max, (b) average of 7 experiments with
min/max, (c) single test run during dedicated reser-
vation; no POSIX I/O data for 129600, 200448.

The experiments with lower process counts were repeated
at different times during production use of the system. I/O
in a shared system is always prone to variability, especially
with a single metadata server being the bottleneck for any
file metadata operation.



Figure 10: Screenshot of Vampir visualizing a trace of the S3D application using 200,448 cores on JaguarPF.
User functions are shown in green, MPI operations in red, and activities of the measurement environment in
yellow (file open), light blue (trace I/O) and dark blue (synchronization).
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Figure 9: Aggregate event write rates for differ-
ent process counts. Averages used as in Figure 7.
The data includes the overheads of establishing the
connection, file open, synchronization, commit, and
close.

The trace files generated with IOFSL were validated by
using the post-mortem analysis tool Vampir. Vampir was
able to read valid trace files and display detailed graphics
of measured events versus a timeline and various other dis-
plays. Figure 10 shows a trace of S3D with 200,448 processes
opened in Vampir, using 21,516 processes for interactive vi-
sualization. All processes are visible in an overview showing
user functions in green, MPI operations in red, and phases
in which the application was suspended by the measurement
environment in blue. In addition, file open operations in the
first flush are presented in yellow, followed by the actual
trace I/O colored light blue as in subsequent flushes. Dark
blue represents synchronization phases at the end of each
flush. The three flushes take place around 360 s, 580 s, and
790 s after the measurement start. Although being clearly
visible, they are sufficiently short in relation to the overall

run time of the application. Additionally, the figure shows
VampirTrace’s internal time synchronizations that extend
the first and the last synchronization phase after 100 s and
800 s. This total overview serves as a starting point to fur-
ther investigate the details by zooming into both the time
and process axes.

At such large scales, visualization for analysis purposes be-
comes more challenging as the ratio between available pix-
els and displayed processes decreases. Vampir’s ability to
smoothly zoom and scroll into both the process and time
dimension helps to navigate even in such large traces. How-
ever, new ways to highlight performance anomalies are re-
quired to help the user at those scales find the right spots to
focus at. These topics are the subject of ongoing research;
our solution lays a foundation for a comprehensive analysis
at full scale by providing a feasible way to store event trace
data.

We have also evaluated the integrated IOFSL and Vampir
toolset on the Intrepid IBM Blue Gene/P (BG/P) leadership-
class computing system deployed at the Argonne Leadership
Computing Facility (ALCF). The purpose of this evalua-
tion was to demonstrate the portability of our solution to
other leadership-class computing platforms, runtime envi-
ronments, storage systems, and applications.

Intrepid is a 557 teraflop IBM BG/P. It consists of 40,960
compute nodes and 640 I/O nodes, each node with one quad-
core 850 MHz PowerPC 450 processor. Intrepid’s compute
nodes are interconnected by a torus network for point-to-
point communication and a tree network for optimized col-
lective operations. The tree network is also used for file
I/O; each set of 64 compute nodes is connected over the
tree to a dedicated I/O node. I/O nodes communicate via
10 Gigabit Ethernet with one another and with Intrepid’s
two high-performance storage systems: a 3 PB GPFS file
system and a 512 TB PVFS file system.



Intrepid’s system administration policies permit users to
customize the runtime environment of the system. For our
evaluation of IOFSL and VampirTrace/OTF, these policies
allowed us to deploy the IOFSL servers on the I/O nodes.
To do so, we had to replace IBM’s ciod I/O forwarding soft-
ware with the ZOID [14] BG/P tree network driver to facil-
itate high-throughput and low-latency communication be-
tween user-space processes on the compute and I/O nodes,
and boot ZeptoOS [31] operating system on the BG/P com-
pute nodes (replacing IBM’s CNK). Additional information
on how IOFSL is deployed on BG/P systems is provided in
our prior work [23].

We successfully traced the Radix-k [26] image composit-
ing algorithm on Intrepid at a variety of scales using the
integrated IOFSL and VampirTrace/OTF toolset. Aside
from small adjustments to the infrastructure deployment,
the software stack required no additional changes to run on
the system. Our evaluation on Intrepid demonstrates that
we can trace additional applications, run our toolsets in dif-
ferent runtime environments and systems, and interact with
different storage systems. Since our initial target platform
was JaguarPF, assessing the performance and scalability of
these tools on IBM BG/P systems is a work in progress.

6. RELATED WORK
The performance analysis toolset Scalasca faced similar

problems to ours when handling large numbers of trace files.
Recently, the scalability of Scalasca was improved up to
300, 000 cores [30]. For tests on a large IBM BG/P system,
the SIONlib library was used. It uses a special multifile for-
mat that contains additional metadata managing chunks of
data from different processes within one file [9]. With SION-
lib, multifile creation is a collective operation. This would
pose a significant limitation to VampirTrace with respect to
the dynamic threading model.

The POSIX I/O standard was designed before the advent
of wide-scale parallelism. As such, it suffers from many fun-
damental characteristics that preclude it from scenarios such
as multiple writers updating the same file — a common need
for parallel I/O oriented activity [13].

New I/O research efforts within standards-oriented activ-
ities have recognized this fact and are actively working on
APIs appropriate for extreme-scale parallelism [13,25]. One
such API is pNFS [12], an extension to NFSv4 designed to
overcome NFS scalability and performance barriers.

MPI-IO [19] provides a more sophisticated I/O abstrac-
tion than POSIX. It includes collective operations and file
views, which enable coordinated and concurrent access with-
out locking [7]. It does not directly provide an “n-to-m”
mapping from clients to output files. OTF’s management of
mixed blocks in shared files would be difficult to implement
on top of MPI-IO, because most implementations (includ-
ing the popular ROMIO) do not return accurate current file
sizes unless a synchronizing collective is used.

The I/O Delegate Cache System (IODC) [22] is a caching
mechanism for MPI-IO that resolves cache coherence issues
and alleviates the lock contention of I/O servers. IOFSL of-
fers similar capabilities but is located below MPI-IO in the
I/O software stack, providing a dedicated abstract device
driver enabling unmodified applications to take full advan-
tage of its optimizations.

The I/O forwarding concept was introduced within the
Sandia Cplant project [24], which used a forwarding frame-

work based on an extended NFS protocol. IOFSL extends
the target environment imagined by Cplant to much larger
scales and higher performance through a more sophisticated
protocol permitting additional optimizations.

Decoupled and Asynchronous Remote Transfers (DART)
[8] and DataStager [1] achieve high-performance transfers on
Cray XT5 using dedicated data staging nodes. Unlike our
approach, which is transparent to the applications that use
POSIX and MPI-IO interfaces, DART requires applications
to use a custom API.

Similarly, Adaptable I/O System (ADIOS) [18] provides
performance improvements through strategies such as pre-
fetch and write-behind, based on application-specific con-
figuration files read at startup; this information also helps
ADIOS minimize the memory footprint during the course of
the application run. In contrast, our approach requires no
knowledge of the application behavior in advance, and it is
situated at a lower level in the I/O software stack.

PLFS [3] is a file system translation layer developed for
HPC environments to alleviate scaling problems associated
with large numbers of clients writing to a single file. Like
our solution, they interpose middleware between the client
application and the underlying file system through the use
of FUSE. Their solution, which is aimed at checkpointing
and similar activities for architectures such as Los Alamos
National Laboratory’s Roadrunner (3,060 nodes), transpar-
ently creates a container structure consisting of subdirecto-
ries for each writer as well as index information and other
metadata for each corresponding data file. Since our so-
lution is focused on supporting hundreds of thousands of
clients or more, we have chosen to aggregate I/O operations
in the middleware, thus resulting in fewer metadata oper-
ations in the underlying parallel file system. Furthermore,
our IOFSL-based solution focuses on transforming uncoor-
dinated file accesses to many unique files, such as a file per
process or thread I/O pattern, into a shared file per group
of processes I/O pattern. Our solution reduces file system
resource contention generated by shared file access patterns
(such as file stripe lock contention or false sharing) and elim-
inates file system metadata overheads generated by I/O pat-
terns with one file per process or thread (such as frequent
file creation, stat, or attribute access operations) at extreme
scales.

IOFSL work extends the earlier ZOID efforts [14]. ZOID is
a Blue Gene-specific function call forwarding infrastructure
that is part of the ZeptoOS project. The I/O forwarding
protocol used by IOFSL was first prototyped in ZeptoOS.
IOFSL is a mature, portable implementation that integrates
with common HPC file systems and also works on the Cray
XT series and Linux clusters.

While recent work has addressed the use of non-blocking
I/O at the I/O forwarding layer [29], our work focuses on
providing a portable and transparent to applications, write-
buffering based, and high-performance non-blocking I/O ca-
pability in HPC environments. Furthermore, non-blocking
file I/O capabilities are not provided by existing I/O for-
warding tools, including IBM’s ciod or Cray’s DVS.

In other areas of computer science research, augmenta-
tions to existing I/O software that take advantage of spe-
cific workload characteristics have been shown effective in
improving performance for important workloads. For ex-
ample, in the Internet services domain, the Google File Sys-
tem provides specialized append operations that allow many



tasks to contribute to an output file in an uncoordinated
manner [10].

7. CONCLUSIONS AND FUTURE WORK
This paper described the use of I/O forwarding middle-

ware for scalable event trace recording. Through an integra-
tion into the OTF library, the Vampir toolset benefits from a
new atomic append capability that is provided by the IOFSL
I/O forwarding layer. Using the Vampir tracing infrastruc-
ture, we demonstrated that this solution enables software
tracing at full-scale on leadership-class systems (200,448 pro-
cesses). A comprehensive trace-based analysis is now feasi-
ble for pattern recognition, post-processing, and visualiza-
tion systems. Within the context of this paper, we have
adressed the increasing trace data volumes at large scales at
I/O level. Further ongoing work investigates advanced fil-
tering, selective tracing and semantic runtime compression
to provide additional benefits for tracing large application
runs. We show that even at medium scales, tracing overhead
can be significantly reduced with our solution. The benefit
for scalability results from reducing the massive amount of
metadata file system requests from all application processes
to a much lower number. Further improvements on perfor-
mance comes from utilizing write buffering, which, thanks
to being implemented on separate I/O forwarding nodes,
does not perturb the application processes. We improved
the scalability of the Vampir toolset to leverage the entire
performance analysis workflow.

While these results meet our immediate needs and objec-
tives, this effort has led us to consider further related lines
of inquiry. We will pursue more advanced aggregate mem-
ory footprint optimizations to yield more available memory
to user applications. While we have addressed the data col-
lection challenges in this paper and presented a solution to
this problem, we do not address how to effectively visualize
trace data for applications running at extreme scales. This
information visualization challenge will be addressed as our
work progresses. We plan to couple the data collection tools
and techniques presented in this paper with recent MPI and
I/O visualization tools that focus on extreme scale event and
trace data collections [20,21].

The capabilities described in this paper are also applicable
to other use cases beyond improving VampirTrace’s I/O and
can be implemented within other I/O forwarding tools. The
new IOFSL capabilities can improve the I/O performance
of tools that generate per-process logs. Thus, these capa-
bilities are applicable to massively parallel applications that
exhibit log like data storage patterns (such as Qbox’s [11]
shared file pointer object capability), data-intensive stream
processing tools (such as LOFAR’s real-time signal process-
ing pipeline [27]), and high-level I/O libraries that allow un-
limited dimensionality or enlargement of variable data struc-
tures (such as chunked data storage in HDF5). While we
limited our demonstration of these capabilities to IOFSL,
the capabilities are sufficiently generic and can be imple-
mented within other production-quality I/O forwarding lay-
ers, such as IBM’s ciod and Cray’s DVS. If these capabilities
were implemented within these production tools, they could
have a substantial impact on the HPC community’s abil-
ity to understand applications running on leadership-class
systems.

The OLCF and ALCF are in the process of upgrading
their leadership-class computing resources. The new Titan

Cray XK6 supercomputer at OLCF will consist of 299,008
CPU cores and 18,688 GPUs, whereas Mira, a 800,000 CPU
core IBM Blue Gene/Q system, will be deployed at ALCF.
Both centers will upgrade the storage systems that serve
their leadership-class computing resources. While we are
confident our toolsets will scale on these systems, we will
re-evaluate the scalability and performance of our tools on
these new platforms as they are deployed. Moreover, we plan
to further investigate the IOFSL and OTF/VampirTrace
configuration space on these systems so that we can identify
optimal infrastructure configurations for performance anal-
ysis I/O workloads.

Acknowledgments
We thank Ramanan Sankaran (ORNL) for providing a work-
ing version of S3D as well as a benchmark problem set for
JaguarPF. We are very grateful to Matthias Jurenz for his
assistance on VampirTrace as well as Matthias Weber and
Ronald Geisler for their support for Vampir. The IOFSL
project is supported by the DOE Office of Science and Na-
tional Nuclear Security Administration (NNSA). This re-
search used resources of the Argonne Leadership Comput-
ing Facility at Argonne National Laboratory and the Oak
Ridge Leadership Computing Facility at Oak Ridge National
Laboratory, which are supported by the Office of Science of
the U.S. Department of Energy under contracts DE-AC02-
06CH11357 and DE-AC05-00OR22725, respectively.

The general enhancement of the VampirTrace and Vampir
tools at TU Dresden for full-size runs on leadership-class
HPC systems is supported with funding and cooperation by
ORNL and UT-Battelle.

8. REFERENCES
[1] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky,

S., Schwan, K., and Zheng, F. DataStager:
Scalable data staging services for petascale
applications. In Proceedings of the 18th ACM
International Symposium on High Performance
Distributed Computing (HPDC) (2009), pp. 39–48.

[2] Ali, N., Carns, P., Iskra, K., Kimpe, D., Lang,
S., Latham, R., Ross, R., Ward, L., and
Sadayappan, P. Scalable I/O forwarding framework
for high-performance computing systems. In
Proceedings of the 11th IEEE International Conference
on Cluster Computing (CLUSTER) (2009).

[3] Bent, J., Gibson, G., Grider, G., McClelland,
B., Nowoczynski, P., Nunez, J., Polte, M., and
Wingate, M. PLFS: A checkpoint filesystem for
parallel applications. In Proceedings of 21st
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC) (2009).

[4] Bland, A., Kendall, R., Kothe, D., Rogers, J.,
and Shipman, G. Jaguar: The world’s most powerful
computer. In Proceedings of the 51st Cray User Group
Meeting (CUG) (2009).

[5] Carns, P., Ligon III, W., Ross, R., and
Wyckoff, P. BMI: A network abstraction layer for
parallel I/O. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing
Symposium, Workshop on Communication
Architecture for Clusters (CAC) (2005).



[6] Chen, J. H., Choudhary, A., de Supinski, B.,
DeVries, M., Hawkes, E. R., Klasky, S., Liao,
W. K., Ma, K. L., Mellor-Crummey, J.,
Podhorszki, N., Sankaran, R., Shende, S., and
Yoo, C. S. Terascale direct numerical simulations of
turbulent combustion using S3D. Computational
Science & Discovery 2, 1 (2009), 015001.

[7] Ching, A., Choudhary, A., Coloma, K., Liao,
W., Ross, R., and Gropp, W. Noncontiguous I/O
access through MPI-IO. In Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid) (2003),
pp. 104–111.

[8] Docan, C., Parashar, M., and Klasky, S. DART:
A substrate for high speed asynchronous data IO. In
Proceedings of the 17th International Symposium on
High Performance Distributed Computing (HPDC)
(2008).

[9] Frings, W., Wolf, F., and Petkov, V. Scalable
massively parallel I/O to task-local files. In
Proceedings of 21st ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC) (2009).

[10] Ghemawat, S., Gobioff, H., and Leung, S. The
Google File System. SIGOPS Operating Systems
Review 37 (Oct. 2003), 29–43.

[11] Gygi, F., Duchemin, I., Donadio, D., and Galli,
G. Practical algorithms to facilitate large-scale
first-principles molecular dynamics. Journal of
Physics: Conference Series 180, 1 (2009).

[12] Hildebrand, D., and Honeyman, P. Exporting
storage systems in a scalable manner with pNFS. In
Proceedings of the 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies
(MSST) (2005), pp. 18–27.

[13] IEEE POSIX Standard 1003.1 2004 Edition.
http://www.opengroup.org/onlinepubs/000095399/

functions/write.html.

[14] Iskra, K., Romein, J. W., Yoshii, K., and
Beckman, P. ZOID: I/O-forwarding infrastructure
for petascale architectures. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP) (2008),
pp. 153–162.

[15] Jagode, H., Dongarra, J., Alam, S., Vetter, J.,
Spear, W., and Malony, A. D. A holistic approach
for performance measurement and analysis for
petascale applications. In Proceedings of the 9th
International Conference on Computational Science
(ICCS) (2009), vol. 2, pp. 686–695.

[16] Jones, T., Dawson, S., Neely, R., Tuel, W.,
Brenner, L., Fier, J., Blackmore, R., Caffrey,
P., and Maskell, B. Improving the scalability of
parallel jobs by adding parallel awareness. In
Proceedings of the 15th ACM/IEEE International
Conference on High Performance Networking and
Computing (SC) (2003).
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